Control of turbulent boundary layers

نویسنده

  • John Kim
چکیده

The objective of this paper is to give an overview of recent progress on boundary layer control made by the author’s research group at University of California, Los Angeles. A primary theme is to highlight the importance of a certain linear mechanism and its contribution to skin-friction drag in turbulent boundary layers—and the implication that significant drag reduction can be achieved by altering this linear mechanism. Examples that first led to this realization are presented, followed by applications of linear optimal control theory to boundary-layer control. Results from these applications, in which the linear mechanism in turbulent channel flow was targeted, indirectly confirm the importance of linear mechanisms in turbulent—and hence, nonlinear—flows. Although this new approach has thus far been based solely on numerical experiments which are yet to be verified in the laboratory, they show great promise and represent a fundamentally new approach for flow control. The success and limitations of various controllers and their implications are also discussed. © 2003 American Institute of Physics. @DOI: 10.1063/1.1564095#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aerodynamic Noise Computation of the Flow Field around NACA 0012 Airfoil Using Large Eddy Simulation and Acoustic Analogy

The current study presents the results of the aerodynamic noise prediction of the flow field around a NACA 0012 airfoil at a chord-based Reynolds number of 100,000 and at 8.4 degree angle of attack. An incompressible Large Eddy Simulation (LES) turbulence model is applied to obtain the instantaneous turbulent flow field. The noise prediction is performed by the Ffowcs Williams and Hawkings (FW-...

متن کامل

Boundary Layers and Heat Transfer on a Rotating Rough Disk

The study of flow and heat transfer over rotating circular disks is of great practical importance in understanding the cooling of rotatory machinery such as turbines, electric motors and design and manufacturing of computer disk drives. This paper presents an analysis of the flow and heat transfer over a heated infinite permeable rough disk. Boundary-layer approximation reduces the elliptic Nav...

متن کامل

Interaction of Synthetic Jets with Laminar and Turbulent Boundary Layers

The interaction between circular synthetic jets and flat-plate laminar/turbulent boundary layers is investigated using CFD simulations in this study. For turbulent boundary layer simulations, large eddy simulation (LES) is applied so as to obtain more accurate flow details. The simulation results are validated using both existing experimental data and numerical results obtained from other resea...

متن کامل

Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer

Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...

متن کامل

The numerical simulation of turbulent boundary layers and film cooling

A new finite volume algorithm has been developed to solve a variety of flows by using large eddy simulation and direct numerical simulation. This finite volume algorithm was developed using a dual time stepping approach with a preconditioning technique and a new factorization implementation. The method takes the advantage of pressure-based and density-based meth­ ods. Thus, it provides an effic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003